A 1.4V Signal Swing Hybrid CLS-Opamp/ZCBC Pipelined ADC Using a 300mV Output Swing Opamp

Benjamin Hershberg Skyler Weaver Un-Ku Moon

Oregon State University, Corvallis, OR

Preview

- 1. Background
 - Correlated Level Shifting
 - Zero-Crossing Based Circuits
- 2. Hybrid CLS-Opamp/ZCBC Structure
- 3. Dynamic Zero-Crossing Detector
- 4. Measurement Results

Correlated Level Shifting (CLS)

- Finite opamp gain error becomes 1/A²
- Opamp output tied to different nodes in Φ₁ and Φ₂

Gregoire, ISSCC 2008

CLS – Basic Operation

- Φ₁ :
- opamp charges output directly
- processes full signal

Opamp Design Requirements

	Φ ₁	Φ ₂
Output Swing	Large	Small
Slew Rate	Large	Small

CLS – Basic Operation

Φ₂:

- opamp is level shifted to mid-rail
- processes error only

Opamp Design Requirements

	Φ ₁	Φ ₂
Output Swing	Large	Small
Slew Rate	Large	Small

Observation

- Use separate charging devices for Φ_1 and Φ_2
- Optimized design for each phase
 - Increase overall accuracy & efficiency
- For this test chip:
 - Φ₁: Zero-crossing based circuit (ZCBC)
 - Φ₂: Double-cascoded telescopic opamp

Opamp Design Requirements

	Φ ₁	Φ ₂
Output Swing	Large	Small
Slew Rate	Large	Small

Φ_1 : Zero-crossing based circuit

Charges output until input virtual ground condition is detected

- + Slewing efficiency
- + Easy to turn off during Φ_2
- No forced feedback
- Linearity and reliability challenges

Sepke, ISSCC 2006

Φ_1 : Zero-crossing based circuit

Charges output until input virtual ground condition is detected

- + Slewing efficiency
- + Easy to turn off during Φ_2
 - No forced feedback
 - Linearity and reliability challenges
- Φ_1 : Fast, coarse charging
- Φ₂: High accuracy feedback

Sepke, ISSCC 2006

Φ₂: Telescopic Opamp

- + High Gain
- + High Speed
- + Low Power

Low Slew

Φ_2 : Telescopic Opamp

- + High Gai
- + High Spe
- Low Pow +

Gain		∞ Sw	vina			V
	×		in g		L.	V
speed	\checkmark	ow Sle	W		┍┨┝─	
ower					╘╢┝─	V
						V.
			,		⊣⊢	• [
Effective	Gain			V _o	Ľ J⊢	V
35dB (A	۹ _{Φ1})				Ր	Vt
+ 75dB (/	4 _{Φ2})			-	┍┩╹	
110 dB	<u>· </u>			V _i + ∙∣ ,	, `	
		1			\ <i>\</i>	╻┣─

- ZCD & current sources begin to turn on
- Opamp output shorted to V_{CM}
- C_{DAC} set to track output

- ZCBC coarse charging
- When ZCD trips:
 - turns off current sources •
 - activates asynchronous timing block •

- Overshoot cancellation
- ΔV on bottom plate of C_{DAC} cancels overshoot

- Opamp fine settling
- Shorting switch (S_{OP}) opens
- C_{DAC} disconnects from output (minimize load)

- Pure ZCBC: signal independent portion becomes DC offset
- Hybrid structure: opamp must cancel all overshoot

Opamp will try to cancel all overshoot present

No cancellation: opamp output saturates

A solution: cancel all predictable overshoot

Opamp only processes signal dependent error

- Charge cancellation DAC
 - Testability
 - No offset accumulation
 - Integrator compatible (e.g. $\Delta\Sigma$)
- Other possibilities to mitigate overshoot
 - ZCD input offset
 - Opamp input offset
 - Other DAC topologies

Concept: redistribute current usage to maximize useful g_m

Step 1: Pre-charge

Step 2: Power conservation

 $A_{ZCD}(V_{i+} - V_{i-}) < (V_{o+} - V_{o-})$

Step 3: High g_m

Step 4: Shutdown

- Strongly correlated design variables
 - A_{ZCD}
 - C_{FB}
 - I_{SRC}/C_{LOAD}
- Best choice dependent on specific design targets

ZCD Variation Tolerance

- In test, I_{ref} varied from 6.5uA 50uA with no impact on performance
 - Only limited by tuning range of test board
 - Current bias, voltage bias, or self-bias feasible
- Higher g_m at critical instant can suppress certain internal and external variations
- Floating bias
 - Blocks certain transient effects
 - Vulnerable to others

ZCD Power Efficiency

- Your mileage will vary
- Depends on design specifications
 - Converter accuracy
 - ZCD time delay
 - Current source slew rate
- For this test ADC: simulation shows 4x improvement over state of the art (*Brooks, ISSCC 2009*)
- In general, the slower the ramp, the more dramatic the savings

Chip Micrograph

- 10 identical 1.5b stages
- 1.5b backend flash

Measured Results

Measured Results

Measured Results

Technology	0.18µm CMOS			
Supply Voltage	1.8V			
Input Voltage Range	1.4V			
Sampling Frequency	f _S = 1	0 MHz	f _s = 20 MHz	
ENOB	11.3b		11.1b	
SNR	69.6dB		68.3dB	
SNDR	69.5dB		68.3dB	
SFDR	78.8dB		76.3dB	
Power	7.2m\//	1.0mM	15.0m\\/	2.2m\//
(analog/digital)	/.2111VV	1.211100	15.01100	Z.ZIIIVV
FoM	343.5 fJ/step		405.5 f.	J/step

Key Benefits

- Accuracy Extremely high effective gain, even in modern processes.
- Robustness Relax ZCBC design by adding linear feedback.
- Efficiency Amplification devices optimized for unique requirements. Efficient charging with ZCBC. High gain, single stage opamp w/o gain boosting amplifiers or compensation.

Acknowledgements

- This work was funded by the Semiconductor Research Corporation and the Center for Design of Analog-Digital Integrated Circuits.
- The authors would like to thank TowerJazz Semiconductor for providing fabrication.

Additional thanks to Peter Kurahashi, Sasidhar Lingam, Phil Crosby, Arnie Frisch, Ed Hershberg, Dianne Glenn and members of the OSU AMS lab for their valuable contributions and insight.

Additional Materials

DNL

INL

Hypothesis for distortion issue

- Even harmonics not seen in previous version of test board
- Possibly originates from off-chip
- However, there is also an on-chip explanation...

Hypothesis for distortion issue

- If inputs begin too close together (i.e. lowest codes), there will be a large variation in ZCD time delay
- Need to be careful that asymmetry of dynamic ZCD doesn't cause an input offset that will worsen this performance "wall"

Hypothesis for distortion issue

Needed more analysis to determine the best value for the dummy load

- Independent digital controls for each stage
 - Vo+ and Vo- DACs also independent
- In measurement:
 - Used one universal DAC code
 - Conclusion: the stage-to-stage variation in signal independent overshoot is small enough for a single global control

Reset switches to reset kickback charge

Dummy load to match Vo+ load with Vo-

Pre-charge switches

Pre-charge switches